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A numerical model using smoothed particle hydrodynamics (SPH) for the sim-
ulation of pore-scale hydrodynamic dispersion is presented. The model is used to
solve the Taylor dispersion problem and explore the characterization of dispersion
as an asymptotic Fickian process. Discrete SPH particle data are analyzed using the
method of moments. Simulations for pure tracer convection are used to calculate val-
ues of tortuosity and effective porosity for two-dimensional spatially periodic porous
media. Tracer convection through such media cannot be described as an asymptotic
Fickian-type process, even for large times, if the driving body force F is parallel to
a line of media symmetry. If F is not parallel to a line of media symmetry, Fickian-
type mixing is possible for tracer convection. An asymptotic Fickian approximation is
valid for tracer dispersion through two-dimensional spatially periodic porous media
when diffusion effects are included. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Transport of a nonreacting, nonsorbing dilute tracer in saturated porous media is generally
modeled using the convection–dispersion equation [3, 11, 29]

dC

dt
= ∂C

∂t
+ u · ∇C = D∇2C, (1)

where C is tracer concentration, usually defined as mass of tracer per unit volume of solution,
t is time, u is the fluid velocity vector, d

dt is the Lagrangian or material derivative, D is the
hydrodynamic dispersion tensor, and ∇2 is the Laplacian operator. Equation (1) models
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dispersion in porous media as a diffusional process and predicts that, in a uniform flow
field, a set of tracer particles will be normally distributed about a center moving with the
average convective velocity [3].

From the viewpoint of classical statistics, if the travel time for an individual tracer par-
ticle becomes much larger than the time interval during which successive velocities are
positively correlated, its total displacement may be considered as the sum of a large num-
ber of elementary displacements that are statistically independent. For such conditions, the
probability distribution of the particle’s total displacement should be normal according to
the central limit theorem [3]. In view of the ergodic principle (i.e., the ensemble averages
and time averages are equivalent in an ergodic system), this distribution also represents the
spatial distribution of displacements of a cloud of initially close particles. It is this tendency
for a cloud of tracer particles to converge to a normal distribution in space and to spread
with a variance that is proportional to time that makes it possible to model hydrodynamic
dispersion as a diffusional process.

The hydrodynamic dispersion tensor D is second-rank symmetric and positive definite
with principal axes that are generally believed to be oriented parallel and transverse to the
mean direction of regional flow [3, 19, 32]. As such, Eq. (1) becomes

∂C

∂t
+ u · ∇C = DL

∂2C

∂L2
+ DT ∇2

T C, (2)

where DL is the dispersion coefficient in the direction of the flow L (i.e., the longitudinal
dispersion coefficient), DT is the dispersion coefficient in the direction perpendicular to the
flow T (i.e., the transverse dispersion coefficient), and ∇2

T is the Laplacian in the transverse
directions.

In practice, DL and DT are generally expressed in terms of the seepage velocity vs for
an isotropic medium as

DL = d0d∗ + (aLvs)
m1 , (3)

DT = d0d∗ + (aT vs)
m2 , (4)

where d0 is the coefficient of molecular diffusion, d∗ is the nondimensional diffusivity
of the medium [13, 30, 39], aL and aT are the longitudinal and transverse geometrical
dispersivities, respectively, for the medium, and m1 and m2 are empirical constants between
1 and 2. Laboratory studies have indicated that, for practical purposes, m1 and m2 can be
generally taken as unity for granular materials [5].

The convection–dispersion equation approach has traditionally considered dispersivity
as a characteristic single-valued property of the entire medium [3]. However, several stud-
ies have suggested that dispersivity is not a constant but rather depends on the mean travel
distance and scale of the problem [12, 14, 21, 31]. Some numerical approaches have been
proposed to model scale-dependent dispersion [31, 36]. In the work of Pickens and Grisak
[31], dispersivity increases temporally as a function of mean travel distance and approaches
an asymptotic value. Tompson [36] described a second-order relationship for local dis-
persive transport which can be cast in the form of a standard Fickian relationship with
time-dependent dispersivity functions that grow to finite, asymptotic values.

To model scale-dependent dispersion, the conventional practice is to simply scale up
small dispersivity values observed in column experiments to the much larger values calcu-
lated from field trials. However, some of the literature suggests that dispersivity may never
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approach an asymptotic finite value for certain cases. As such, the Fickian approximation of
dispersion and the traditional convection–dispersion equation are not valid. Matheron and
Marsily [24] showed for the special case of a stratified porous medium with flow parallel to
bedding that solute transport cannot be generally represented by the convection–dispersion
equation, even for large times. Smith and Schwartz [34] concluded that field-scale disper-
sion (macrodispersion), which is usually caused by mixing due to spatial heterogeneities
in the hydraulic conductivity field, cannot be modeled as a large-value diffusion process.
Koch and Brady [20] showed that the description of transport in terms of a local, average
Fickian process is not applicable if the length and time scales on which a transport process
occurs are not much larger than the scale of variations in the velocity field experienced by a
tracer particle. Fractal media show long and theoretically infinite correlation scale and the
dispersive behavior is inherently pre-asymptotic [10]. In Cushman’s nonequilibrium non-
local theory of transport [10], the concept of classical Fickian dispersive flux is a special
case.

Implementations of a numerical solution to the convection–dispersion equation have been
realized with the finite difference and finite element methods [4, 37], the method of charac-
teristics [1], and random walk schemes [9]. Mesh-free particle methods, such as the particle
strength exchange method [41], provide other interesting alternatives. Pore-scale flow and
dispersion has also been simulated using the lattice–Boltzmann technique in which a fluid is
modeled according to the average behavior of particles on a lattice rather than as free mov-
ing discrete particles [23]. In this paper, hydrodynamic dispersion through two-dimensional
spatially periodic porous media is modeled using smoothed particle hydrodynamics (SPH).
The work is an extension of that presented by Morris et al. [27], Zhu et al. [40], and Zhu
and Fox [39] and is described in detail by Zhu [38]. Section 2 presents the SPH model
and the method of moments used to interpret simulation results. In Section 3, the model
is verified by simulating the classical Taylor dispersion problem. In Section 4, the SPH
model is used to simulate purely convective transport (i.e., without diffusion effects). In
Section 5, diffusion is included in the SPH model to simulate hydrodynamic dispersion.
The dispersion properties of spatially periodic porous media are calculated and the validity
of the asymptotic Fickian assumption for the description of the hydrodynamic dispersion
of a tracer at the pore-scale level is investigated. Section 6 presents conclusions of the study
along with a discussion of the strengths and weaknesses of the SPH dispersion model.

2. SPH MODEL FOR HYDRODYNAMIC DISPERSION

Smoothed particle hydrodynamics was originally developed for astrophysical applica-
tions to model compressible fluids at high Reynolds number [15, 22]. SPH is a fully
Lagrangian computational fluid dynamics technique in which the numerical solution is
achieved without a grid. The standard approach to SPH is reviewed by Benz [6] and
Monaghan [25]. In SPH, a compressible fluid is represented by a field of disordered parti-
cles (Fig. 1), typically of fixed mass, which follow the local fluid motion, convect contact
discontinuities, preserve Galilean invariance, and reduce computational diffusion of various
fluid properties including momentum when compared to the finite difference method. The
equations governing the evolution of the fluid become expressions for interparticle forces
and fluxes when written in SPH form. In standard SPH, each particle carries mass m, den-
sity ρ, velocity u, and other fluid quantities specific to a given problem. Each particle is
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FIG. 1. Sphere of influence for SPH particle a.

mathematically treated as an interpolation point at which fluid properties are computed as
the weighted sum of values from neighboring particles.

2.1. Evolution of Flow Field

Water flow through porous media is generally regarded as incompressible since the bulk
fluid velocity is much smaller than the corresponding speed of sound. The solution to an
incompressible flow problem is achieved by solving the mass and momentum conservation
equations throughout the flow domain subjected to proper boundary conditions,

∇ · u = 0, (5)

du
dt

= − 1

ρ
∇ p + ν∇2u + g, (6)

where p is pressure, ν is the fluid kinematic viscosity, and g is gravitational acceleration.
SPH was recently extended to model low-Reynolds-number (Re ≤ 1) incompressible flow

[27, 40]. A brief overview of the method used to evaluate fluid particle accelerations for
quasi-incompressible viscous flows is provided here. Readers are referred to Morris et al.
[27] and Zhu et al. [40] for other modifications to the standard SPH formalism that are
needed to minimize errors for simulating such flows.

In SPH, the pressure gradient acceleration term is usually symmetrized by writing

∇ p

ρ
= ∇

(
p

ρ

)
+ p

ρ2
∇ρ. (7)

This results in the most common SPH expression for the term

−
(

1

ρ
∇ p

)
a

= −
∑

b

mb

(
pa

ρ2
a

+ pb

ρ2
b

)
∇a Wab, (8)
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where W is the SPH kernel function, subscripts a and b denote SPH particles a and b,
respectively, and ∇a denotes the gradient with respect to coordinates of particle a. The
kernel typically takes the form

W (r, h) = 1

hσ
f

( |r|
h

)
, (9)

where σ is the number of dimensions for the problem, h is the smoothing length, Wab =
W (rab, h), and rab = ra − rb. Provided that the SPH kernel is an even function of r, Eq. (8)
conserves linear and angular momenta exactly since the forces acting between individual
particles are antisymmetric. Momentum conservation can be satisfied by an infinite number
of symmetric forms of the pressure gradient acceleration term given by Monaghan [25],

−
(

1

ρ
∇ p

)
a

= −
∑

b

mb

(
pa

ρε
aρ

2−ε
b

+ pb

ρε
bρ

2−ε
a

)
∇a Wab, (10)

where ε may take any value. The form (i.e., ε = 1)

−
(

1

ρ
∇ p

)
a

= −
∑

b

mb

(
pa + pb

ρaρb

)
∇a Wab (11)

provides certain advantages for problems involving contact discontinuities and was used
for the study described herein.

Many forms of artificial viscosity have been proposed for modeling viscous fluid in SPH
[6, 25]. The current method employed an SPH estimation of viscous diffusion as [27, 40]

(ν∇2u)a =
(

µ

ρ
∇2u

)
a

=
∑

b

mb(µa + µb)rab · ∇a Wab

ρaρb
(
r2

ab + 0.01 h2
) uab, (12)

where µ is fluid dynamic viscosity, uab = ua − ub, and the 0.01 h2 term is included to
maintain a nonzero denominator. Equation (12) is based on a similar SPH expression used
by Monaghan [26] to model heat conduction. This hybrid expression combines a standard
SPH first derivative with a finite difference approximation of a first derivative. By taking a
Taylor expansion about particle a, it can be shown that this expression is approximate since
it conserves linear momentum exactly, while angular momentum is only approximately
conserved [26].

Based on the SPH evaluations of pressure gradient acceleration and viscous diffusion,
momentum conservation is written as

dua

dt
= −

∑
b

mb

(
pa + pb

ρaρb

)
∇a Wab +

∑
b

mb(µa + µb)uab

ρaρb

(
1

|rab|
∂Wab

∂rab

)
+ g, (13)

and mass conservation is expressed as

dρa

dt
=

∑
b

mbuab · ∇a Wab. (14)

A state equation relates particle pressure and density as

pa = c2ρa, (15)
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where c is the speed of sound chosen to ensure that the particle densities vary no more than
approximately 1%.

No-slip boundary conditions are implemented to simulate flow in porous media [27].
Simulations using the method show close agreement with series solutions for Couette and
Poiseuille flows [27]. Furthermore, comparison with finite element solutions for flow past a
regular lattice of cylinders shows close agreement for the velocity and pressure fields [40].

2.2. Evolution of Tracer Diffusion

The solution for tracer diffusion (i.e., diffusion of a nonreacting, nonsorbing species
within a stationary fluid) in porous media is achieved by solving the following diffusion
equation subjected to proper boundary conditions:

dC

dt
= d0∇2C. (16)

If the diffusion equation is rewritten as

dC

dt
= d0∇2C = d0ρ

ρ
∇2C, (17)

it becomes evident that the method used to treat viscosity (Eq. (12)) can be adopted to
evolve tracer concentration [39],

dCa

dt
=

(
d0ρ

ρ
∇2C

)
a

=
∑

b

mb(d0,aρa + d0,bρb)rab · ∇a Wab

ρaρb
(
r2

ab + 0.01 h2
) Cab, (18)

where Cab = Ca − Cb. Comparative studies with available analytical and numerical so-
lutions show that the SPH diffusion model has excellent accuracy and that the accuracy
increases with increasing numerical resolution for a given problem [39].

2.3. Hydrodynamic Dispersion in Periodic Porous Media

The SPH hydrodynamic dispersion model was developed by implementing both fluid flow
and diffusion simultaneously within a simulation. As such, SPH particles move in response
to local pressure gradients and tracer mass diffuses from particle to particle in response
to local concentration gradients. Particle positions and concentrations are updated using
a predictor–corrector technique in which the time step is limited by appropriate stability
constraints [27, 38, 39].

The model has been used to simulate hydrodynamic dispersion in spatially periodic porous
media that are generated by repeating unit cells in one, two, or three dimensions. In spatially
periodic porous media, while the low-Reynolds-number flow field is also periodic in nature,
this is not true for the concentration field. As a result, a computing domain consisting of
multiple unit cells is needed to evolve the concentration field. Figure 2 shows the initial
concentration field for a problem of tracer dispersion. The concentration computing domain
consists of six unit cells identified by (i , j) coordinates. For this tracer hydrodynamic
dispersion model, the flow field is calculated for a single unit cell corresponding to i = 1
and j = 1. Every SPH fluid particle has one set of flow-related quantities (e.g., velocity
and density) and carries one concentration value for each unit cell in the concentration-
computing domain. In this case, each fluid particle carries six values of concentration. The
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FIG. 2. Initial concentration field for a problem of tracer hydrodynamic dispersion in a spatially periodic
porous medium.

concentration field is determined by the particle concentration values for each unit cell.
However, particle positions in unit cell (i , j) other than unit cell (1, 1) are not needed
during the course of a simulation since the evolution of concentration field is driven by
local concentration gradients and only the relative positions between particles are needed.
These positions are calculated from unit cell (1, 1) and are the same for every unit cell. For
the purpose of analyzing and visualizing the concentration field, SPH particles are mapped
to other unit cells in the concentration-computing domain from unit cell (1, 1).

To perform the simulation in Fig. 2, the flow field is evolved to steady state with all particle
concentrations equal to zero. Particles in area A (Fig. 3) are then assigned a concentration
value of unity for unit cell (1, 1) and particles in areas B, C , and D are assigned concentration
values of unity for unit cells (1, 2), (2, 2), and (2, 1), respectively. Once the concentration
field is initialized, the flow continues according to the method described in Section 2.1
and the concentration field is evolved according to the method described in Section 2.2.
Although the tracer field is initially represented by a certain number of fluid particles (the

= 1
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j
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y

xBC
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FIG. 3. Unit cell (1, 1) for the problem in Fig. 2.
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FIG. 4. Wrapping fluid particles and creating image particles to simulate tracer dispersion in a spatially
periodic porous medium.

initial tracer particles), every fluid particle has the potential to carry solute mass later in a
simulation due to diffusion. Because fluid particles are wrapped around the unit cell (1, 1)
and all SPH particles physically reside inside unit cell (1, 1), concentration values of the
wrapped particles are reassigned accordingly. For example, as fluid particle a (Fig. 4) is
wrapped back into unit cell (1, 1), its value of concentration for unit cell (i , j) after wrapping
is equal to its value of concentration for unit cell (i − 1, j) before wrapping.

Values of concentration must also be correctly assigned to image fluid particles needed
for proper implementation of boundary conditions in the SPH method [27, 38]. For example,
if particle c is the image particle of particle b in unit cell (1, 1) (Fig. 4), the value of concen-
tration for particle c corresponding to unit cell (i , j) is equal to the value of concentration
for particle b corresponding to unit cell (i + 1, j).

The concentration-computing domain used in this work consisted of a constant number
of unit cells. Each simulation was terminated when the tracer field crossed the boundary
of the domain. Although a large concentration-computing domain (e.g., column i = 3 in
Fig. 2) may be unnecessary during the initial stages of a simulation, several tens of unit cells
are usually needed for a meaningful simulation of hydrodynamic dispersion as the tracer
field spreads out. The computing efficiencies gained by dynamically changing the size of
the concentration-computing domain during the course of a simulation are not explored in
this work. Readers are referred to Morris et al. [28] for information on the computation
time requirements of the flow simulation method.

If d0 = 0, particle-to-particle diffusion does not occur and pure tracer convection is
simulated. As there is no mass exchange between tracer and carrier fluid for pure tracer
convection, the solute mass associated with each initial tracer particle is constant during the
course of a simulation. Thus, initial tracer and fluid particles can be simply distinguished
as “black” and “white” fluid particles, respectively, for this case.

2.4. Method of Moments

Evaluation of spatial moments of the tracer distribution can provide an estimation of
the dispersivity of porous media [2, 7, 16]. For the SPH hydrodynamic dispersion model,
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each fluid particle is characterized by position R and solute mass M = Cm/ρ. The zeroth
moment M0, first moment M1, and centered second moment M2 of tracer distribution are,
respectively,

M0 =
∫

dM∫
dMo

=
∫

CdV∫
Co dV

∼=
∑

b Cb
mb
ρb∑

b Cb,o
mb
ρb,o

, (19)

M1 =
∫

RdM∫
dMo

=
∫

RCdV∫
Co dV

∼=
∑

b RbCb
mb
ρb∑

b Cb,o
mb
ρb,o

, (20)

and

M2 =
∫

(R − M1)
2 dM∫

dMo
=

∫
(R − M1)

2 CdV∫
Co dV

∼=
∑

b(Rb − M1)
2 Cb

mb
ρb∑

b Cb,o
mb
ρb,o

, (21)

where summations are performed over all fluid particles and subscript o denotes an initial
value. M0 will have a constant value of unity if tracer mass is conserved during a simulation.
M1 represents the position of the center of tracer mass and is used to calculate the seepage
velocity vs as

vs = �M1

�t
. (22)

M2 represents the spreading of a tracer field about its center and is used to calculate the
dispersion coefficient as

D = �M2

2�t
. (23)

Zhu [38] showed that for tracer diffusion through porous media the method of moments
produces reliable values for the effective diffusion coefficient when compared with corre-
sponding values obtained from steady-state diffusion simulations. In the latter approach, a
concentration difference is applied across the unit cell of a periodic porous medium and
the resulting concentration field at steady state is used to obtain the effective diffusion
coefficient of the medium [39].

3. SIMULATIONS OF TAYLOR DISPERSION

Dispersion of a tracer in a fluid flowing between stationary infinite plates at y = 0 and
y = L (Fig. 5) was simulated using the SPH hydrodynamic dispersion model. The method
of moments was employed to yield values of Taylor dispersion coefficient DTaylor, which
were compared with values from the analytical solution [17, 18]

DTaylor = d0 + L2v2
s

210 d0
, (24)

where vs is the average fluid velocity determined by

vs = F L2

12ν
(25)
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FIG. 5. Initial condition (t = 0) for Taylor dispersion between parallel plates. Tracer particles (shown in
black) have an initial concentration of unity.

and F is the body force driving the flow. Equation (24) is based on Taylor’s original solution
for hydrodynamic dispersion in a cylindrical tube [35]. To observe asymptotic behavior, t
must evolve to a value greater than tc, which is defined for this problem geometry as

tc = L2

4d0
. (26)

Time tc is the characteristic time for transverse diffusion in the Taylor dispersion problem.
SPH was used to simulate dispersion for L = 0.001 m; ρ = 103 kg/m3; ν = 10−6 m2/s;

d0 = 10−6 m2/s; F = 0.05, 0.10, and 0.15 m/s2; and 50 fluid particles spanning the distance
L . After the flow was evolved to steady Poiseuille conditions, dispersion simulations began
with the initial tracer configuration shown in Fig. 5. Figure 6 shows two plots of the tracer
concentration field generated from the discrete fluid particle data for F = 0.10 m/s2.

The three Taylor dispersion simulations showed that tracer mass was conserved (M0
∼= 1)

in each case. Figure 7 is a plot of first moment in the x-direction M1x as a function of time.
Values of M1x were computed by subtracting the first moment at time t = 0 from those at

(a)

(b)

FIG. 6. Tracer concentration fields for Taylor dispersion between parallel plates at (a) t = 0.01140 s, and
(b) t = 0.35344 s.
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FIG. 7. First moment in the x-direction of tracer concentration versus time for Taylor dispersion between
parallel plates.

time t . Figure 7 shows that the center of tracer mass moved at constant velocity in each
case. Values of average fluid velocity vs (Eq. (22)) differ from the analytical solutions by a
maximum of 1.2%.

Figure 8 is a plot of centered second moment in the x-direction M2x as a function of time.
Values of M2x were computed by subtracting centered second moment at time t = tc from
those at time t . Figure 8 shows that, in each case, tracer spreading about its center grows
linearly with time for t > tc. The corresponding asymptotic values of dispersion coefficient
in the x-direction DTaylor (Eq. (23)) are 1.06 × 10−6, 1.30 × 10−6, and 1.68 × 10−6 m2/s
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FIG. 8. Centered second moment in the x-direction of tracer concentration versus time for Taylor dispersion
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for F = 0.05, 0.10, and 0.15 m/s2, respectively. SPH solutions for DTaylor were less than
the analytical solutions by a maximum of 3.4%.

4. SIMULATIONS OF TRACER CONVECTION

Five simulations were completed for tracer convection (i.e., without particle-to-particle
diffusion) through spatially periodic porous media with circular cylinders arranged in
square, staggered, and hexagonal arrays. Each medium has a porosity n = 0.8 and a
cylinder radius R = 0.5 mm. The fluid was modeled as water (i.e., ρ = 103 kg/m3 and
ν = 10−6 m2/s) driven by body force F . The direction of F is denoted by L , the direction
perpendicular to F is denoted by T , and the angle between F and the x-axis is denoted by
γ (Fig. 9). Figures 10–14 show tracer particle fields at certain values of t for the five simu-
lations. The tracer fields were analyzed using the method of moments for seepage velocity
vs , effective porosity neff, and mechanical dispersion coefficients DmL and DmT . Tortuosity
T of each medium was also calculated. Table I presents a summary of results for the tracer
convection simulations, where Npart denotes the total number of SPH particles per unit cell
for each simulation.

4.1. Tortuosity of Porous Media

Figures 15 and 16 show the pathlines of four tracer particles for the hexagonal array
simulations. Each particle takes a tortuous path to avoid obstacles (i.e., solid grains) in the
flow field. Values of tortuosity T for the porous media were calculated as

T =
∑

z
Le,z

Lz

Ntracer
, (27)

where Le,z and Lz are lengths of the pathline and straight-line distances traveled by tracer
particle z, respectively (Fig. 17), and Ntracer is the total number of tracer particles in the flow
field.

Figure 18 shows the tortuosity of the media as a function of time for each tracer convection
simulation. A constant tortuosity value is reached in each case for t > 200 s. Tortuosity
values for the five simulations are considerably less than the commonly used value of

√
2 =

1.414 proposed by Carman [8] for unconsolidated porous aggregates. It is also apparent
that tortuosity is a function of media geometry. For the three simulations with γ = 0◦, the
square and staggered arrays have the smallest and largest tortuosity values, respectively.
For the square array with γ = 0◦, most of the tracer particles have an unobstructed travel

TABLE I

Summary of Results for Five Tracer Convection Simulations

Simulation Array type Npart F (m/s2) γ T vs (m/s) v (m/s) Re neff

1 square 3384 0.001 0◦ 1.051 9.30 × 10−5 7.35 × 10−5 0.047 0.790
2 staggered 8320 0.001 0◦ 1.139 9.06 × 10−5 7.17 × 10−5 0.045 0.791
3 staggered 8320 0.001 30◦ 1.067 9.08 × 10−5 7.18 × 10−5 0.045 0.791
4 hexagonal 8160 0.0007 0◦ 1.094 6.57 × 10−5 5.19 × 10−5 0.033 0.790
5 hexagonal 8160 0.0007 45◦ 1.082 6.56 × 10−5 5.18 × 10−5 0.033 0.790
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FIG. 9. Body force F with direction L and perpendicular direction T .

FIG. 10. Tracer convection through a square array of circular cylinders (γ = 0◦). Tracer particles (shown in
black) initially occupied the area enclosed by the dashed box.

FIG. 11. Tracer convection through a staggered array of circular cylinders (γ = 0◦). Tracer particles (shown
in black) initially occupied the area enclosed by the dashed box.

FIG. 12. Tracer convection through a hexagonal array of circular cylinders (γ = 0◦). Tracer particles (shown
in black) initially occupied the area enclosed by the dashed box.
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FIG. 18 Tracer convection through a staggered array of circular cylinders (

��30�

). Tracer particles (shownin black) initially occupied the area enclosed by the dashed box 

FIG. 14.Tracer convection through a hexagonal array of circular cylinders (��45

�

). Tracer particles (shown
in black) initially occupied the area enclosed by the dashed box.
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FIG. 15. Pathlines of four tracer particles in a hexagonal array of circular cylinders (γ = 0◦).

FIG. 16. Pathlines of four tracer particles in a hexagonal array of circular cylinders (� � 45 �).

y

Unit cell L

e,

L
x

FIG. 17. Pathline Le,z and straight-line distance Lz

traveled by tracer particle z.
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FIG. 18. Tortuosity versus time for five simulations of tracer convection.

path, which produces a tortuosity value close to unity. The staggered array introduces more
obstacles into the flow field and tortuosity increases as a result. Although the hexagonal
array has the same solid surface area per unit cell as the staggered array, it has larger flow
channels, which results in a tortuosity value intermediate between those for the square and
staggered arrays.

Not only is tortuosity a function of media geometry, it is also a function of the direction
of the applied body force. The effect of body force direction on tortuosity is apparent for
the staggered array simulations. For γ = 30◦, fewer tracer particles must travel around the
center solid grain in the staggered array than for γ = 0◦. This results in a lower tortuosity
value for γ = 30◦. Similar observations can be made regarding the effect of γ for the
hexagonal array.

4.2. Seepage Velocity and Effective Porosity of Porous Media

Seepage velocity for each tracer convection simulation was calculated using Eq. (22).
The seepage velocity in the L-direction vsL fluctuates within a 5% range about an average
value of vs for each simulation, which indicates that the tracer flow field is numerically
stable. Values of vs (Table I) were used to calculate Reynolds number Re = vs R/ν for the
simulations. The small values of Re indicate creeping flow conditions.

The value of effective porosity neff for each medium (Table I) was calculated as

neff = v

vs
, (28)

where v is the steady-state Darcy velocity in the L-direction. The effective porosity excludes
“dead-end” pores and thus represents the fraction of pore space that is available to transmit
fluids. For the media type considered in this work, neff should be equal to n. The small
difference between neff and n in Table I may be due to the placement of SPH boundary
particles [38]. As the first layer of boundary particles is placed on the solid surface, the
porous medium simulated actually has a porosity slightly smaller than the nominal value.
Although neff is nearly equal to n for uniform granular materials, it may be significantly
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less than n for clays due to their more complex microfabric of clay particle clusters and
intercluster voids [33].

4.3. Mechanical Dispersion Coefficients of Porous Media

Mechanical dispersion coefficients for tracer convection were calculated using Eq. (23).
Figures 19 and 20 show M2L , M2T , DmL , and DmT as functions of time for the simulations 1
to 4 (Table I). M2L , M2T , DmL , and DmT denote centered second moments and mechanical
dispersion coefficients in the L- and T -directions, respectively. Values of M2L and M2T

were computed by subtracting centered second moments at time t = 0 from those at time t .
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FIG. 19. (a) Centered second moment and (b) mechanical dispersion coefficient versus time for tracer con-
vection through square, staggered, and hexagonal arrays of circular cylinders (γ = 0◦).
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FIG. 20. (a) Centered second moment and (b) mechanical dispersion coefficient versus time for tracer con-
vection through a staggered array of circular cylinders (γ = 30◦).

M2L and DmL show different characteristics depending on the body force direction. When
F is parallel to a line of symmetry of the solid inclusions, periodic pathlines exist, M2L

increases nearly quadratically with t and DmL increases nearly linearly with t (Fig. 19).
When F is not parallel to a line of symmetry of the solid inclusions, irregular pathlines exist
and M2L shows a more irregular behavior (Fig. 20). Although M2L generally increases with
t in this case, it may decrease for short periods, which results in a negative value of DmL .
Figure 20 b shows that DmL does not steadily increase with time and instead fluctuates
about an average value. When F is parallel to a line of media symmetry, M2T and DmT

are practically zero (Fig. 19). When F is not parallel to a line of media symmetry, M2T
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shows small fluctuations about zero, which are amplified when DmT is calculated (Fig. 20).
Results for simulation 5 (Table I) show characteristics similar to those of simulation 4 [38].

Cushman [10] expressed the relationship between centered second moment and time as

log(M2) = s log(t). (29)

A value of s = 1 corresponds to a Fickian behavior. An evaluation of the simulation data
shows that an approximately linear relationship exists between log(M2L) and log(t) in each
case [38]. If F is parallel to a line of media symmetry, the linear fits for M2L are quite good
and s ∼= 2. When F is not parallel to a line of media symmetry, s has a value close to unity,
which suggests an approximate Fickian dispersion behavior.

An asymptotic mechanical dispersion coefficient was not found for two-dimensional
tracer convection through spatially periodic porous media when F is parallel to a line of
media symmetry, even for large times. Constant dispersivity implies that a single velocity
path is statistically representative of all velocity paths. This means that a tracer particle
released anywhere in the unit cell of a spatially periodic porous medium will eventually
sample the entire unit cell by convection alone. However, when F is parallel to a line of
media symmetry (e.g., Fig. 15), different tracer particles experience consistently different
velocity paths. In this case, spatially periodic pathlines are apparent and the velocity of
a tracer particle remains correlated with the media structure throughout all space. The
distance between two tracer particles released on different streamlines increases with time,
seemingly without bound.

Figure 16 shows particle pathlines for a case in which F is not parallel to a line of
media symmetry. Although pathlines do not cross each other under laminar flow conditions,
irregular pathlines allow tracer particles to sample velocity fields throughout the unit cell
during the course of a simulation. This results in a mixing process which can be approximated
as Fickian. Figure 21 illustrates this concept. In Fig. 21a, F is parallel to a line of media
symmetry and the tracer particles always sample the same velocity path throughout the
simulation; in Fig. 21b, F is not parallel to a line of media symmetry and the tracer particles
eventually sample the velocity field of the entire unit cell. Another mechanism which allows
tracer mass to sample the velocity field of the entire unit cell is molecular diffusion. The
following section discusses this issue.

(a)

+ + +

+ + +

(b)

FIG. 21. Pathlines of tracer particles when (a) F is parallel to a line of media symmetry and (b) F is not
parallel to a line of media symmetry.
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5. SIMULATIONS OF TRACER HYDRODYNAMIC DISPERSION

Since asymptotic Fickian behavior was not found for pure tracer convection in spatially
periodic porous media when F is parallel to a line of media symmetry, the issue of whether
tracer hydrodynamic dispersion (i.e., including particle-to-particle diffusion) under this
condition can be described as an asymptotic Fickian process was investigated. Due to
computational limitations, extensive simulations of tracer hydrodynamic dispersion through
spatially periodic porous media were not conducted.

Three simulations of one-dimensional tracer hydrodynamic dispersion through a peri-
odic square array of circular cylinders (n = 0.8 and R = 0.5 mm) were conducted for
ρ = 103 kg/m3; ν = 10−6 m2/s; F = 0.001 m/s2; and d0 = 10−10 m2/s, 10−9 m2/s, and
10−8 m2/s. The body force F was applied in the positive x-direction (i.e., γ = 0◦), the
induced steady-state seepage velocity vs was 9.30 × 10−5 m/s, and Re = vs R/ν = 0.0465.
For the simulations, the Peclet number Pe = vs R/d0 = 465 for d0 = 10−10 m2/s, Pe = 46.5
for d0 = 10−9 m2/s, and Pe = 4.65 for d0 = 10−8 m2/s. Generally, diffusive transport tends
to dominate convective transport for Pe ∼< 5 [3]. Figure 22 shows tracer concentration fields
generated directly from discrete fluid particle data for the simulations with d0 = 10−10 m2/s
and d0 = 10−8 m2/s at t = 65.9 s. The tracer field front becomes obscure and the concen-
tration field becomes more uniform as d0 increases.

Figure 23 is a plot of M2L as a function of time for the three simulations. At any given
time, tracer spreading about its center increases as d0 decreases. Corresponding values of
DL (Eq. (23)) are shown in Fig. 24. The curve corresponding to d0 = 10−10 m2/s differs
little from the one for pure tracer convection (d0 = 0). An asymptotic dispersion coefficient
is indicated for the simulation with d0 = 10−8 m2/s. If m1 = 1 is assumed for Eq. (3), the
asymptotic dispersion coefficient yields aL = 0.31 mm. The value of d∗ for this medium is
0.8144 for γ = 0◦ [39].

Tracer hydrodynamic dispersion in spatially periodic porous media can be fundamentally
different from pure tracer convection when F is parallel to a line of media symmetry. An

(a)(b)FIG. 22.Tracer concentrationfields for dispersion through a square array of circular cylinders for (a)d0=
10−10m2/s, and (b)d0=10−8m2/s. The tracer initially occupied the area between the dashed lines and had aconcentration of unity.
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FIG. 23. Centered second moment in the L-direction versus time for one-dimensional tracer transport through
a square array of circular cylinders.

asymptotic Fickian behavior exists for tracer hydrodynamic dispersion under this condition.
However, this behavior appears some time after the tracer is introduced into the flow. A
characteristic time tc defined as [7]

tc = L2
D

d0
(30)

is required for a tracer to sample all interstitial space of the unit cells, where LD is the
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FIG. 24. Dispersion coefficient in the L-direction versus time for one-dimensional tracer transport through a
square array of circular cylinders.
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characteristic Darcy length scale of the medium. The value of d0 directly controls the value
of tc and hence the process that tracer particles sample pore spaces through molecular
diffusion. If LD = R = 0.5 mm, tc = 25 s for the simulation with d0 = 10−8 m2/s. This is
approximately the time at which DL becomes essentially constant in Fig. 24. However, tc =
2500 s for d0 = 10−10 m2/s and tc = 250 s for d0 = 10−9 m2/s. Due to the small time step
limited by fluid viscosity and a large concentration-computing domain, these simulations
could not be run long enough to reach their tc values.

6. CONCLUSIONS

A pore-scale hydrodynamic dispersion model was developed using smoothed particle
hydrodynamics. The model was used to simulate Taylor dispersion and the results were
in close agreement with analytical solutions. Simulations corresponding to pure tracer
convection (i.e., with no particle-to-particle diffusion) were used to calculate tortuosity
and effective porosity for three spatially periodic configurations of two-dimensional porous
media. It was found that pure tracer convection cannot be described as an asymptotic
Fickian-type process, even for large times, if the driving body force F is parallel to a
line of media symmetry. If F is not parallel to a line of media symmetry, Fickian-type
mixing is possible for pure tracer convection. An asymptotic Fickian approximation is also
valid for tracer hydrodynamic dispersion (i.e., including particle-to-particle diffusion) after
a certain characteristic time that decreases with increasing value of molecular diffusion
coefficient.

As a mesh-free particle method, SPH can incorporate the physics of flow and mass
transport to simulate hydrodynamic dispersion at the pore-scale level. The method can also
be used to systematically study dispersion phenomena as a function of media properties
and flow conditions. A clear advantage of the approach is that the Lagrangian framework of
SPH allows the effects of convection-driven mechanical mixing to be evaluated separately
from the effects of particle-to-particle diffusion. The mesh-free character of SPH and the
straightforward physical interpretation of the results make this an attractive alternative
to established methods such as finite differences or finite elements. Computational cost
remains a limitation of the method for pore-scale modeling of hydrodynamic dispersion
due to numerical stability constraints of the time step. Although periodic boundaries were
used to reduce the flow computations to those of a single unit cell in this study, a meaningful
simulation of hydrodynamic dispersion in periodic porous media required several tens of
unit cells for modeling the evolution of a concentration field. Combined with the need for
longer simulated flow times to achieve asymptotic dispersive behavior, this significantly
lengthened the computation time for each simulation (up to several weeks).

ACKNOWLEDGMENTS

The authors extend their sincere thanks to Dr. Joseph P. Morris of Lawrence Livermore National Laboratory
for many insightful discussions regarding the use of SPH to model dispersion. This work was sponsored by
the Air Force Office of Scientific Research, USAF, under Grant F49620-96-1-0020. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S.
Government.



644 ZHU AND FOX

REFERENCES

1. M. B. Abbott, An Introduction to the Method of Characteristics (American Elsevier, New York,
1966).

2. R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Philos. Trans. R. Soc. London Ser. A
235, 67 (1956).

3. J. Bear, Dynamics of Fluids in Porous Media (American Elsevier, New York, 1972).

4. J. Bear and A. Verruijt, Modeling Groundwater Flow and Pollution (Reidel, New York, 1987).

5. P. B. Bedient, H. S. Rifai, and C. J. Newell, Ground Water Contamination: Transport and Remediation
(Prentice Hall, Englewood Cliffs, NJ, 1994).

6. W. Benz, Smooth particle hydrodynamics: A review, in The Numerical Modelling of Nonlinear Stellar
Pulsations, edited by J. R. Buchler (Kluwer Academic, Dordrecht 1990), pp. 269–288.

7. H. Brenner, Dispersion resulting from flow through spatially periodic porous media, Philos. Trans. R. Soc.
London Ser. A 297, 81 (1980).

8. P. C. Carman, Fluid flow through granular beds, Trans. Inst. Chem. Eng. 15, 150 (1937).

9. A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57, 785 (1973).

10. J. H. Cushman, The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles (Kluwer Academic,
Boston, 1997).

11. R. A. Freeze and J. A. Cherry, Groundwater (Prentice Hall, Englewood Cliffs, NJ, 1979).

12. J. J. Fried, Groundwater Pollution (American Elsevier, New York, 1975).

13. J. J. Fried and M. A. Combarnous, Dispersion in porous media, Adv. Hydrosci. 7, 169 (1971).

14. L. W. Gelhar, C. Welty, and K. R. Rehfeldt, A critical review of data on field-scale dispersion in aquifers,
Water Resources Res. 28(7), 1955 (1992).

15. R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical
stars, Mon. Not. R. Astron. Soc. 181, 375 (1977).

16. F. J. M. Horn, Calculation of dispersion coefficients by means of moments, AIChE J. 17, 613 (1971).

17. R. N. Horne and F. Rodriguez, Dispersion of tracer flow in fractured geothermal systems, Geophys. Res. Lett.
10(4), 289 (1983).

18. L. C. Hull, J. D. Miller, and T. M. Clemo, Laboratory and simulation studies of solute transport in fracture
networks, Water Resources Res. 23(8), 1505 (1987).

19. D. L. Koch and J. F. Brady, Dispersion in fixed beds, J. Fluid Mech. 154, 399 (1985).

20. D. L. Koch and J. F. Brady, A non-local description of advection–diffusion with application to dispersion in
porous media, J. Fluid Mech. 180, 387 (1987).

21. A. Lallemand-Barres and P. Peaudecerf, Recherche des relations entre les valeurs mesurees de la dispersivite
macroscopique d’un milieu aquifere, ses autres caracteristiques et les conditions de mesure, Bull. Bur. Rech.
Geol. Min. (BRGM), Ser. 2, Sec. III 4, 277 (1978).

22. L. B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron. J. 82(12), 1013 (1977).

23. R. S. Maier, D. M. Kroll, H. T. Davis, and R. S. Bernard, Pore-scale flow and dispersion, Int. J. Mod. Phys.
C 9(8), 1523 (1998).

24. G. Matheron and G. De Marsily, Is transport in porous media always diffusive? A counter example, Water
Resources Res. 16(5), 901 (1980).

25. J. J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30, 543 (1992).

26. J. J. Monaghan, Heat Conduction with Discontinuous Conductivity, Applied Mathematics Reports and
Preprints, 95/18 (Monash University, Australia, 1995).

27. J. P. Morris, P. J. Fox, and Y. Zhu, Modeling low Reynolds number incompressible flows using SPH, J. Comput.
Phys. 136, 214 (1997).

28. J. P. Morris, Y. Zhu, and P. J. Fox, Parallel simulations of pore-scale flow through porous media, Comput.
Geotechnics 25, 227 (1999).

29. A. Ogata, Theory of Dispersion in a Granular Medium, Technical report, U.S. Geological Survey Professional
Paper 411-I (1970).



PORE-SCALE DISPERSION SIMULATIONS USING SPH 645

30. T. K. Perkins and O. C. Johnston, A review of diffusion and dispersion in porous media, Soc. Petrol. Eng. J.
3, 70 (1963).

31. J. F. Pickens and G. E. Grisak, Modeling of scale-dependent dispersion in hydrogeologic systems, Water
Resources Res. 17(6), 1701 (1981).

32. O. A. Plumb and S. Whitaker, Dispersion in heterogeneous porous media, Water Resources Res. 24(7), 913
(1988).

33. C. D. Shackelford, Limitations to contaminant transport modeling in waste geotechnics, Geotechnical News
2, 50 (1989).

34. L. Smith and F. W. Schwartz, Mass transport. 1. A stochastic analysis of macroscopic dispersion, Water
Resources Res. 16(2), 303 (1980).

35. G. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Philos. Trans. R. Soc. London
Ser. A 219, 186 (1953).

36. A. F. B. Tompson, On a new functional form for the dispersive flux in porous media, Water Resources Res.
24(11), 1939 (1988).

37. H. F. Wang and M. P. Anderson, Introduction to Groundwater Modeling: Finite Difference and Finite Element
Methods (Freeman, San Francisco, 1982).

38. Y. Zhu, A Pore-Scale Study of Flow and Transport through Porous Media. Ph.D. thesis (Purdue University,
1999).

39. Y. Zhu and P. J. Fox, Smoothed particle hydrodynamics model for diffusion through porous media, Transport
Porous Media 43(3), 441 (2001).

40. Y. Zhu, P. J. Fox, and J. P. Morris, A pore-scale numerical model for flow through porous media, Int. J. Numer.
Anal. Methods Geomech. 23, 881 (1999).

41. S. Zimmermann, P. Koumoutsakos, and W. Kinzelbach, Simulation of pollutant transport using a particle
method, J. Comput. Phy. 173, 322 (2001).


	1. INTRODUCTION
	2. SPH MODEL FOR HYDRODYNAMIC DISPERSION
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	3. SIMULATIONS OF TAYLOR DISPERSION
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	4. SIMULATIONS OF TRACER CONVECTION
	TABLE I
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	FIG. 20.
	FIG. 21.

	5. SIMULATIONS OF TRACER HYDRODYNAMIC DISPERSION
	FIG. 22.
	FIG. 23.
	FIG. 24.

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

